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1 Introduction

Thermodynamics and statistical mechanics are, at their core, observer de-
pendent theories of statistical inference. Given the nature of one’s beliefs,
they provide a mechanism for computing the likelihood of possible outcomes
of observations consistent with those beliefs in such a way as to minimize
assumptions about missing information. Examples of this are the second
law of thermodynamics and the Boltzmann distribution.

Because of this, many “physical” thermodynamic quantities are, in fact,
subjective and observer dependent. The difference between heat and work,
the concept of reversibility, and the ideas of temperature and chemical po-
tential are observer dependent. For example, the quantity of “heat” which
passes from one system to another is nothing more than the energy which
passes between those systems by way of physical degrees of freedom for which
an observer does not (or chooses not to) have information–the concepts of
macroscopic and microscopic are not fundamental to thermodynamics. How-
ever, it should be mentioned that all observers, regardless of information,
will conclude that the net entropy should be non-decreasing in an isolated
system.

In this report we will focus on thermodynamic work; in particular, we
will show that the amount of work which an observer must provide to reset
a bit is dependent on the knowledge which that observer has about the bit.
We will see that the existence of quantum correlations (which are in some
sense “stronger” than classical correlations) can provide an observer with
more knowledge about the state of a bit than would be allowed by even the
strongest classical correlation. As a generalization of Landauer’s principle,
this will turn out to provide a work yield in a situation where any classical
correlations could provide none.

In what follows, we will consider a physical process which can reset a
bit given quantum information while providing a net yield in work. We
will write a general formula for the work yield in such reset processes which
can be considered a generalization of Landauer’s principle (generalized only
in the sense that it allows for varying amounts of information about the
system being erased). In the case of a quantum reset process we will see



that the second law of thermodynamics is upheld by destroying one unit of
entanglement in the process. We will also learn that, in the same way, there
is a thermodynamic significance to quantum discord, namely, that discord
represents the gain in work yield achievable in principle between a classical
observer and a quantum one.

2 Generalized Landauer’s Principle

Nowadays, Landauer’s principle is generally stated as follows: “A physical
process which performs a logically irreversible operation must cause an in-
crease in thermodynamic entropy in the environment or in the body of the
apparatus which performs it.” This may be the only statement of the prin-
ciple which could be considered universally accepted. In order to create the
increase in entropy of the environment it has been reported that one must
pay a “price” in some conserved macroscopic quantity in the system, such
as angular momentum or energy. Typically, it is energy in the form work
which is provided. Then, one could say: “A physical process which per-
forms a logically irreversible operation must require an input of work which
is converted to heat in the apparatus or environment.” In the case of the
erasure of a bit of information this statement now reduces to: “A physical
process which erases a bit requires a minimum amount of work kT ln(2) to
be provided and which will be converted to heat in the environment.” This is
essentially the way that Landauer originally stated it. Some have attempted
to go further and state: “A physical process which erases a bit requires a
minimum amount of work kT ln(2) and is thermodynamically irreversible.”
Irreversibility in this case is observer-dependent; an observer who knows the
initial physical state of the bit will conclude irreversibility, while one which
is ignorant of the initial state will conclude reversibility. However, since,
from the point of view of an observer who is ignorant of the initial state, the
logical process performed is no longer logically irreversible, then Landauer’s
principle doesn’t apply to begin with. Therefore, it can confidently be said
that, for an isolated system to truly erase a bit, work kT ln(2) must be pro-
vided and dissipated as heat in the environment, and that the process will
be thermodynamically irreversible.

However, here we’re more interested in the work requirement than the
question of reversibility. The essential reason for the required work input
in Landauer’s principle is that the physical apparatus performing the era-
sure (which, by assumption, cannot have any information about the bit it is
erasing) must perform the erasure using a process which is not conditioned



on the state of the bit. In other words, the computer must have one single
”bit erasing” physical operation which is performed on all bits when erasing,
regardless of their physical state. Now, the fundamental fact that classical
and quantum dynamics of isolated systems are information-preserving leads
one to conclude that this process would be impossible in an isolated com-
puter unless the number of microstates associated to each logical (1, 0) state
were increased by a factor of two. This can only be done by introducing en-
ergy into the non-information-bearing degrees-of-freedom of the computing
apparatus. In other words, we must perform work on the system which will
ultimately be converted to “heat.”

However, one can imagine that, if an observer were in fact able to condi-
tion the reset process on the physical state of the bit, then it could be done
with no work input, since either the “bit-flip” or the “identity” operation
would be separately logically reversible. So, if one has complete information
about the bit it can be erased with zero work. If one has no information
about the bit, or proceeds as if that were the case (as in Landauer’s principle
above), it costs kT ln(2). This suggests the formula w = S(X|O)kT , where
w is the work required, S(X|O) is the information entropy of X (the bit)
conditioned on a memory O, and kT is Boltzmann’s constant multiplied by
the temperature of the environment or computing device.

Now, a fundamental requirement for an erasure process is that we not
disturb the memory in the process, lest we render our theoretical results
invalid (i.e., the memory could then take entropy from the environment,
removing the need to apply work). Therefore, we must have ∆S(O) = 0,
where ∆ signifies the change resulting from the erasure process. In fact, the
total entropy change of such a process is

∆S(XOT ) = ∆S(XO) + ∆S(T )−∆S(XO : T ) (1)

= ∆S(X|O) + ∆S(O) + ∆S(T )

= ∆S(X|O) +
w

kT
≥ 0.

where we’ve discarded the mutual information between the heat reservoir
(T ) and bits (XO) due to the nature of typical thermodynamic observers,
we’ve let ∆S(O) = 0, have written the entropy change of the reservoir in
terms of the work w which we perform, and have enforced the second law
of thermodynamics. This implies that w ≥ −∆S(X|O)kT . Since we are
performing a reset procedure, all observers know that the final state of X is
zero. Therefore ∆S(X|O) = 0 − S(X|O)i, where the subscript denotes the



initial state. Henceforth we will only refer to the entropy S(X|O)i of the
initial state, and so we will drop the subscript. We now have

w ≥ S(X|O)kT. (2)

Is this lower bound imposed by the second law of thermodynamics achiev-
able? The answer is yes, and in the next section we give an explicit example.

2.1 A Thermal Process for Erasing an Unknown Bit

Consider a bit for which we have no information. The state we assign is
a completely mixed state with equal probabilities for zero and one. Also
consider that the Hamiltonian of the system which is holding the bit is
completely degenerate, so energy of the bit is E0 ≡ 0. Now if we put this bit
into contact with a heat reservoir at temperature T it will be randomized
(however without exchanging any energy or increasing total entropy). Now,
let’s say that we slowly alter the Hamiltonian of the bit’s system so that
the energy of the one state is taken up to +∞. By integrating over the
Boltzmann distribution we can see that this takes an amount of work equal
to kT ln(2):

w =

∫ ∞
0

n̄(E) dE =

∫ ∞
0

e−E/kT dE

1 + e−E/kT
(3)

= kT ln(2),

where n̄(E) is the occupation statistics of an energy level E given by the
Boltzmann distribution. Essentially, the higher we push, the less likely the
bit is to be in the one state, so pushing to ∞ costs only a finite amount of
work. Since the one state is at an extremely high energy, the state of the
bit is almost surely in the zero state. Now we decouple the bit front the
reservoir, lower the energy level of the one state back to zero, and hence the
bit has been erased at the expense of work kT ln(2). This process is both
logically and thermodynamically reversible given that we had no knowledge
of the state of the bit to be erased. Note that when we lower the energy
level back to zero at the end we do not get the work back since the bit is
no longer in contact with the heat reservoir and so is never present in the
one state as we lower it. In this example we have reached the lower bound
of Eq. 2, given that our initial information was S(X|O) = ln(2)–maximal
uncertainty. A similar process con be constructed to thermally erase a bit
in a known state, with a work cost of zero.



3 Negative Conditional Entropy

In quantum mechanics, the quantum conditional entropy is defined as S(X|O) ≡
S(XO)−S(O). If X and O represent a pair of maximally entangled qubits,
then S(X|O) < 0, something which is not possible for any state of classical
correlation between X and O. We may ask, does Eq. 2 hold even in the
case that the bits X and O are quantum mechanical and hence may be en-
tangled? If so, does a value of w < 0 actually imply that we can yield work
by resetting the bit? In fact, the answer is yes. In the next section we will
see an explicit example of this process.

But before doing that, let’s calculate the difference in work yield for
a given state XO for an observer who can potentially take advantage of
quantum correlations and one who cannot:

wc − wq = S(X|Oc)kT − S(X|Oq)kT = D(X|O)kT, (4)

where D(X|O) is the quantum discord wc and wq are the classical observer
and quantum observer work costs, respectively, and where S(X|Oc) is the
entropy calculated by an observer who is only allowed to take advantage of
classical correlations in a state. We see that the difference in work cost is
related to the quantum discord–thereby giving that quantity a thermody-
namic significance. Note that the maximally entangled state minimizes Eq.
2 and maximizes discord. Therefore, if we can find a reversible process which
erases a bit given a maximally entangled memory bit, we will yield kT ln(2)
of work and will have performed as well as nature allows with regard to work
extraction.

4 A Simple Work Extraction Process for Bit Era-
sure With Quantum Memory

To extract kT ln(2) of work from an entangled bit pair XO, first perform
a nonlocal rotation (which is not forbidden) on the bits to place them into
the |0〉 ⊗ |0〉 state. Already we have reset the bit X to zero! However, we
cannot be finished, for we have altered the reduce state of the memory bit
O from a completely mixed state to a pure state. In order to restore it we
need only place it in contact with a heat reservoir. However, in doing this,
we can take advantage of the ‘reverse erasure’ procedure, whereby one can
extract kT ln(2) of work by allowing a bit to be randomized. This process
is nothing but the reverse of the thermal erasure process discussed earlier.
After performing this the bit O has been returned to a fully mixed state



and we have received the work kT ln(2) which we predicted we could obtain.
One may wonder why it is necessary to ‘remix’ the bit O since, is it not the
case that a |0〉 state is a possible physical instance of a completely mixed
state? The answer is yes; however, had we not thermally mixed the bit we
would have had no means of extracting work from the heat reservoir.

4.1 Is the Second Law Upheld?

In the process just discussed we have erased a bit whose reduced state was
initially completely mixed, have left the memory bit’s reduced state un-
changed, have extracted work from a heat reservoir, and have left the en-
vironment otherwise unchanged. One may wonder why the second law of
thermodynamics doesn’t appear to have been broken in this situation. The
reason is that the entanglement between the bits was broken in the process.
If we consider the observer who knows the initial joint state of the bits then
the initial entropy is zero. After the process, this observer perceives that
the entropy of the reservoir has decreased but that the entropy of the joint
state of the bits has increased by that same amount. Hence the process is
reversible. However, we cannot simply repeat this procedure, continually
“erasing” the bit and extracting work. In fact, the joint state of the bits
is now mixed, so it cannot be restored to a pure (entangled) state without
performing work and, consequently, losing what we have gained. Therefore,
we cannot operate this process on a cycle without introducing new entangled
bit pairs.

5 Conclusions

In conclusion, we have derived a lower bound on the work required to erase
a bit in the general case where the information can be classical or quantum.
This generalized Landauer’s principle supports a lower bound which can be
negative, meaning that a reset process could, in principle, yield work in the
case of quantum information. We have shown (by explicit example) that
this lower bound is achievable and that it does not violate the second law
of thermodynamics from the point of view of the observer performing the
reset.

In doing this it has become clear that the concepts of negative entropy,
entanglement and quantum discord have physical significance. Their pres-
ence (provided an observer is aware of it) can increase the net amount of
work which can be extracted during a given thermal process. This is because
the presence of these low-entropy states permits the observer to extract an



extra unit of work (by destroying them) than would have been possible in
the presence of only classical correlations.
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